Optimizing Outdoor Cat Management to Minimize Preventable Deaths

John D. Boone, Philip Miller, Joyce Briggs, Val Benka, Dennis Lawler, Margaret Slater, Julie Levy, and Stephen Zawistowski

1

Cat simulation model (Miller et al. 2014)

Parameters

- Age-specific birth rates, survival rates, dispersal rates, etc.

Start State

Apply Birth

Within one time step

Apply movement

End State

Apply management

New time step (end becomes start)

2

FRC Initiative

- Dr. Phil Miller, CPSP
- Dr. Aaron Anderson, NWRC
- Dr. John Boone, ACC&D, GBBO, HSUS
- Joyce Briggs, ACC&D
- Val Benka, ACC&D
- Dr. Margaret Slater, ASPCA, ACC&D Sci. Adv.
- Dr. Steve Zawistowski, ASPCA, ACC&D Sci. Adv.
- Dr. Dennis Lawler, Univ. of Illinois
- Dr. Felicia Nutter, Tufts Univ.
Scenarios

- No Action (Baseline)
- Light Removal (Remove 25%)
- Heavy Removal (Remove 50%)
- Light Culling (Remove 25%, return to K, repeat)
- Heavy Culling (Remove 50%, return to K, repeat)
- Light Sterilization (Sterilize 25%)
- Heavy Sterilization (Sterilize 75%)

Cumulative Preventable Deaths over 10 Years

- Kittens that die before 6 mo.
- Adults removed and killed
Per Capita Reproduction Rate

Population Size

TIME

Number of Deaths

Kittens Live Kittens Die

Kittens Adults

No Action Remove-Low Remove-High Cell-Low Cell-High Sterilize-Low Sterilize-High

Kittens Born

0 200 400 600 800 1000 1200 1400

0 200 400 600 800 1000 1200 1400

13 14 15 16
<table>
<thead>
<tr>
<th>Size</th>
<th>Rate</th>
<th>Size X Rate</th>
<th>Size</th>
<th>Rate</th>
<th>Size X Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>45</td>
<td>0.9</td>
<td>40.5</td>
<td>45</td>
<td>0.9</td>
<td>40.5</td>
</tr>
<tr>
<td>43</td>
<td>0.7</td>
<td>30.1</td>
<td>43</td>
<td>0.7</td>
<td>30.1</td>
</tr>
<tr>
<td>41</td>
<td>0.6</td>
<td>24.6</td>
<td>41</td>
<td>0.6</td>
<td>24.6</td>
</tr>
<tr>
<td>39</td>
<td>0.5</td>
<td>19.5</td>
<td>39</td>
<td>0.5</td>
<td>19.5</td>
</tr>
<tr>
<td>37</td>
<td>0.4</td>
<td>14.8</td>
<td>37</td>
<td>0.4</td>
<td>14.8</td>
</tr>
<tr>
<td>35</td>
<td>0.3</td>
<td>10.5</td>
<td>35</td>
<td>0.3</td>
<td>10.5</td>
</tr>
<tr>
<td>33</td>
<td>0.2</td>
<td>6.6</td>
<td>33</td>
<td>0.2</td>
<td>6.6</td>
</tr>
<tr>
<td>SUM</td>
<td>228.3</td>
<td>111.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Preventable Deaths

- High D
- Low N
- Mid
- High D
- High N
- Low N
- Mid
- High D
- High N

Proportion Non-Local

- No Action
- Remove Low
- Remove High
- Cull Low
- Cull High
- Sterilize Low
- Sterilize High

Year

Sterilize 25%
Sterilize 75%
N = 100.6 cats
N = 103.1 cats
Conclusion for TNR

- Intensity ➔
 - Far fewer preventable deaths
 - Better population reduction

- Project planning and funding

Next... Economics